Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9801-9810, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551407

RESUMO

The sequence-controlled assembly of nucleic acids and amino acids into well-defined superstructures constitutes one of the most revolutionary technologies in modern science. The elaboration of such superstructures from carbohydrates, however, remains elusive and largely unexplored on account of their intrinsic constitutional and configurational complexity, not to mention their inherent conformational flexibility. Here, we report the bottom-up assembly of two classes of hierarchical superstructures that are formed from a highly flexible cyclo-oligosaccharide─namely, cyclofructan-6 (CF-6). The formation of coordinative bonds between the oxygen atoms of CF-6 and alkali metal cations (i) locks a myriad of flexible conformations of CF-6 into a few rigid conformations, (ii) bridges adjacent CF-6 ligands, and (iii) gives rise to the multiple-level assembly of three extended frameworks. The hierarchical superstructures present in these frameworks have been shown to modulate their nanomechanical properties. This research highlights the unique opportunities of constructing convoluted superstructures from carbohydrates and should encourage future endeavors in this underinvestigated field of science.


Assuntos
Carboidratos , Metais , Metais/química , Carboidratos/química , Conformação Molecular , Aminoácidos
2.
J Am Chem Soc ; 146(8): 5108-5117, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367279

RESUMO

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos Ftálicos , Estruturas Metalorgânicas/química , Zircônio/química , Biomimética , Compostos Organometálicos/química , Peroxidase do Rábano Silvestre
3.
Angew Chem Int Ed Engl ; 62(44): e202309737, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37665693

RESUMO

Every year vast quantities of silver are lost in various waste streams; this, combined with its limited, diminishing supply and rising demand, makes silver recovery of increasing importance. Thus, herein, we report a controllable, green process to produce a host of highly porous metal-organic framework (MOF)/oligomer composites using supercritical carbon dioxide (ScCO2 ) as a medium. One resulting composite, referred to as MIL-127/Poly-o-phenylenediamine (PoPD), has an excellent Ag+ adsorption capacity, removal efficiency (>99 %) and provides rapid Ag+ extraction in as little as 5 min from complex liquid matrices. Notably, the composite can also reduce sliver concentrations below the levels (<0.1 ppm) established by the United States Environmental Protection Agency. Using theoretical simulations, we find that there are spatially ordered polymeric units inside the MOF that promote the complexation of Ag+ over other common competing ions. Moreover, the oligomer is able to reduce silver to its metallic state, also providing antibacterial properties.

4.
Sci Adv ; 9(13): eadg4923, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989363

RESUMO

With the fast-growing accumulation of electronic waste and rising demand for rare metals, it is compelling to develop technologies that can promotionally recover targeted metals, like gold, from waste, a process referred to as urban mining. Thus, there is increasing interest in the design of materials to achieve rapid, selective gold capture while maintaining high adsorption capacity, especially in complex aqueous-based matrices. Here, a highly porous metal-organic framework (MOF)-polymer composite, BUT-33-poly(para-phenylenediamine) (PpPD), is assessed for gold extraction from several matrices including river water, seawater, and leaching solutions from CPUs. BUT-33-PpPD exhibits a record-breaking extraction rate, with high Au3+ removal efficiency (>99%) within seconds (less than 45 s), a competitive capacity (1600 mg/g), high selectivity, long-term stability, and recycling ability. Furthermore, the high porosity and redox adsorption mechanism were shown to be underlying reasons for the material's excellent performance. Given the accumulation of recovered metallic gold nanoparticles inside, the material was also efficiently applied as a catalyst.

5.
Nat Commun ; 14(1): 501, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720860

RESUMO

Electrocatalytic reduction of carbon monoxide into fuels or chemicals with two or more carbons is very attractive due to their high energy density and economic value. Herein we demonstrate the synthesis of a hydrophobic Cu/Cu2O sheet catalyst with hydrophobic n-butylamine layer and its application in CO electroreduction. The CO reduction on this catalyst produces two or more carbon products with a Faradaic efficiency of 93.5% and partial current density of 151 mA cm-2 at the potential of -0.70 V versus a reversible hydrogen electrode. A Faradaic efficiency of 68.8% and partial current density of 111 mA cm-2 for ethanol were reached, which is very high in comparison to all previous reports of CO2/CO electroreduction with a total current density higher than 10 mA cm-2. The as-prepared catalyst also showed impressive stability that the activity and selectivity for two or more carbon products could remain even after 100 operating hours. This work opens a way for efficient electrocatalytic conversion of CO2/CO to liquid fuels.

6.
Chem Sci ; 13(21): 6418-6428, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35733888

RESUMO

Using azolium-based ligands for the construction of metal-organic frameworks (MOFs) is a viable strategy to immobilize catalytically active N-heterocyclic carbenes (NHC) or NHC-derived species inside MOF pores. Thus, in the present work, a novel copper MOF referred to as Cu-Sp5-BF4, is constructed using an imidazolinium ligand, H2Sp5-BF4, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazole-3-ium tetrafluoroborate. The resulting framework, which offers large pore apertures, enables the post-synthetic modification of the C2 carbon on the ligand backbone with methoxide units. A combination of X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) and electron microscopy (EM), are used to show that the post-synthetic methoxide modification alters the dimensionality of the material, forming a turbostratic phase, an event that further improves the accessibility of the NHC sites promoting a second modification step that is carried out via grafting iridium to the NHC. A combination of X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) methods are used to shed light on the iridium speciation, and the catalytic activity of the Ir-NHC containing MOF is demonstrated using a model reaction, stilbene hydrogenation.

7.
J Colloid Interface Sci ; 621: 398-405, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35468560

RESUMO

An efficient strategy to construct non-noble metal-base electrocatalysts for water splitting is the direct carbonization of metal-organic aerogel composites. Herein for the first time, a novel tube-like metal-carbon nanocomposite with encapsulated small-size individual Fe, Cr and Ni nanoparticles, is prepared by the carbonization of a FeCr-doped Ni-benzenetricarboxylate aerogel. The slender skeleton of the aerogel, supercritical drying and Cr doping alleviates metal aggregation and facilitates the in-situ growth of carbon tubes. This nanocomposite exhibits remarkably low overpotential of the hydrogen evolution reaction (137 mV) and oxygen evolution reaction (220 mV). Further, the cell voltage could be as low as 1.54 V with the current density of 10 mA cm-2 and illustrates excellent stability under a continuous operation for 50 h. This non-noble metal-base electrocatalyst is comparable to noble metal-based electrocatalysts and the impressive performance is ascribed to the abundant active catalytic sites and short reactant diffusion pathways. This work demonstrates great capability of aerogel derivation in the highly active electrocatalyst design for promising electrochemical applications.

8.
Nanomicro Lett ; 14(1): 84, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348885

RESUMO

Wood-based hydrogel with a unique anisotropic structure is an attractive soft material, but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible. In this study, an all-wood hydrogel was constructed by cross-linking cellulose fibers, polyvinyl alcohol (PVA) chains, and lignin molecules through the Hofmeister effect. The all-wood hydrogel shows a high tensile strength of 36.5 MPa and a strain up to ~ 438% in the longitudinal direction, which is much higher than its tensile strength (~ 2.6 MPa) and strain (~ 198%) in the radial direction, respectively. The high mechanical strength of all-wood hydrogels is mainly attributed to the strong hydrogen bonding, physical entanglement, and van der Waals forces between lignin molecules, cellulose nanofibers, and PVA chains. Thanks to its excellent flexibility, good conductivity, and sensitivity, the all-wood hydrogel can accurately distinguish diverse macroscale or subtle human movements, including finger flexion, pulse, and swallowing behavior. In particular, when "An Qi" was called four times within 15 s, two variations of the pronunciation could be identified. With recyclable, biodegradable, and adjustable mechanical properties, the all-wood hydrogel is a multifunctional soft material with promising applications, such as human motion monitoring, tissue engineering, and robotics materials.

9.
Biotechnol Biofuels ; 14(1): 219, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809676

RESUMO

BACKGROUND: Cellulase plays a key role in converting cellulosic biomass into fermentable sugar to produce chemicals and fuels, which is generally produced by filamentous fungi. However, most of the filamentous fungi obtained by natural breeding have low secretory capacity in cellulase production, which are far from meeting the requirements of industrial production. Random mutagenesis combined with adaptive laboratory evolution (ALE) strategy is an effective method to increase the production of fungal enzymes. RESULTS: This study obtained a mutant of Trichoderma afroharzianum by exposures to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), Ethyl Methanesulfonate (EMS), Atmospheric and Room Temperature Plasma (ARTP) and ALE with high sugar stress. The T. afroharzianum mutant MEA-12 produced 0.60, 5.47, 0.31 and 2.17 IU/mL FPase, CMCase, pNPCase and pNPGase, respectively. These levels were 4.33, 6.37, 4.92 and 4.15 times higher than those of the parental strain, respectively. Also, it was found that T. afroharzianum had the same carbon catabolite repression (CCR) effect as other Trichoderma in liquid submerged fermentation. In contrast, the mutant MEA-12 can tolerate the inhibition of glucose (up to 20 mM) without affecting enzyme production under inducing conditions. Interestingly, crude enzyme from MEA-12 showed high enzymatic hydrolysis efficiency against three different biomasses (cornstalk, bamboo and reed), when combined with cellulase from T. reesei Rut-C30. In addition, the factors that improved cellulase production by MEA-12 were clarified. CONCLUSIONS: Overall, compound mutagenesis combined with ALE effectively increased the production of fungal cellulase. A super-producing mutant MEA-12 was obtained, and its cellulase could hydrolyze common biomasses efficiently, in combination with enzymes derived from model strain T. reesei, which provides a new choice for processing of bioresources in the future.

10.
Chemosphere ; 272: 129640, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33465618

RESUMO

The mesoporous poly(N,N'-methylene-bis(1-(3-vinylimidazolium)) chloride), labeled as PDVIm-Cl, with double anions (Cl-) and low monomer molecular weight was synthesized and applied in the adsorption of anionic dyes (acid orange 7 (AO7), sunset yellow (SY), reactive blue 19 (RB19), congo red (CR)). Due to the mesoporous structure, abundant Cl- and positively charged imidazole rings, the poly(ionic liquid) (PIL) exhibited superior adsorption ability towards anionic dyes. What is more, the RB19 adsorption by PDVIm-Cl could achieve the highest capacity (2605 ± 254 mg g-1) which was nearly twice higher than the maximum adsorption capacity of the previously reported materials. All the adsorption kinetic data and isotherms fitted well with the pseudo second-order model and Langmuir-Freundlich model. To better explore the practical potential of the PIL for dye adsorption, the adsorption under different pH values and column adsorption performances were also evaluated. Results showed that PDVIm-Cl exhibited high removal efficiencies for anionic dyes over a wide pH range (2-10). Also, the great reusability could be well demonstrated by the achievable continuous column adsorption-desorption process. It is worth mentioning that the regeneration could be realized with very little desorbent which was far less than the adsorption volume flowing through the column and the desorption efficiency was well maintained after three consecutive cycles. At last, the adsorption mechanism was explored by experiments combined with quantum chemical calculations and showed anionic dyes adsorption by PDVIm-Cl was a joint process dominated by the ion exchange, electrostatic interaction, hydrogen bond and π-π stacking.


Assuntos
Líquidos Iônicos , Poluentes Químicos da Água , Adsorção , Ânions , Corantes , Concentração de Íons de Hidrogênio , Cinética
11.
J Am Chem Soc ; 142(31): 13415-13425, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32654487

RESUMO

Metal-organic frameworks (MOFs) offer great promise in a variety of gas- and liquid-phase separations. However, the excellent performance on the lab scale hardly translates into pilot- or industrial-scale applications due to the microcrystalline nature of MOFs. Therefore, the structuring of MOFs into pellets or beads is a highly solicited and timely requirement. In this work, a general structuring method is developed for preparing MOF-polymer composite beads based on an easy polymerization strategy. This method adopts biocompatible, biodegradable poly(acrylic acid) (PAA) and sodium alginate monomers, which are cross-linked using Ca2+ ions. Also, the preparation procedure employs water and hence is nontoxic. Moreover, the universal method has been applied to 12 different structurally diverse MOFs and three MOF-based composites. To validate the applicability of the structuring method, beads consisting of a MOF composite, namely Fe-BTC/PDA, were subsequently employed for the extraction of Pb and Pd ions from real-world water samples. For example, we find that just 1 g of Fe-BTC/PDA beads is able to decontaminate >10 L of freshwater containing highly toxic lead (Pb) concentrations of 600 ppb while under continuous flow. Moreover, the beads offer one of the highest Pd capacities to date, 498 mg of Pd per gram of composite bead. Furthermore, large quantities of Pd, 7.8 wt %, can be readily concentrated inside the bead while under continuous flow, and this value can be readily increased with regenerative cycling.

12.
Se Pu ; 38(1): 104-112, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34213157

RESUMO

ß -cyclodextrin (ß-CD) and its derivatives are an emerging class of functional monomers that find widespread use in molecular imprinting. It is well known that ß-CD and its derivatives are capable of forming host-guest interaction inclusion complexes with many guest molecules. Molecularly imprinted polymers prepared via this type of interaction have the advantages of high stability and excellent selectivity. Therefore, ß-CD-based molecularly imprinted polymers have attracted much attention and have been extensively developed for the selective separation and enrichment of target compounds in environmental and food samples with complex matrices. The objective of this review is to reveal the advantages of such molecularly imprinted polymers in complex sample pretreatment by reviewing the applications of molecularly imprinted polymers based on ß-CD and its derivatives as functional monomers in environmental and food sample pretreatment since 2013.

13.
Chem Sci ; 11(40): 10991-10997, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34094347

RESUMO

While metal-organic frameworks (MOF) alone offer a wide range of structural tunability, the formation of composites, through the introduction of other non-native species, like polymers, can further broaden their structure/property spectrum. Here we demonstrate that a polymer, placed inside the MOF pores, can support the collapsible MOF and help inhibit the aggregation of nickel during pyrolysis; this leads to the formation of single atom nickel species in the resulting nitrogen doped carbons, and dramatically improves the activity, CO selectivity and stability in electrochemical CO2 reduction reaction. Considering the vast number of multifarious MOFs and polymers to choose from, we believe this strategy can open up more possibilities in the field of catalyst design, and further contribute to the already expansive set of MOF applications.

14.
Mikrochim Acta ; 186(9): 652, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31463802

RESUMO

Non-conjugated polymer carbon dots (PCDs) with a 9% fluorescence quantum yield were synthesized by a pyrolytic method using polyethyleneimine as the sole precursor. The PCDs have an average size about 2.1 nm and a blue fluorescence, with excitation/emission maxima at 380/457 nm, that is quenched by the drug metronidazole. The method has a linear response in the 0.06-15 µg mL-1 metronidazole concentration range and a 20 ng mL-1 detection limit. Milk samples were spiked at two levels (0.6 and 5.0 µg mL-1), and the recoveries of metronidazole are in the range of 96.7-102.2%. Graphical abstract Schematic representation of preparation of non-conjugated polymer carbon dots (PCDs) and detection of metronidazole. Metronidazole with negative charge is easy to produce electrostatic interaction with polyethyleneimine chain with positive charge, which leads to PCDs fluorescence quenching, so as to realize metronidazole detection.


Assuntos
Carbono/química , Fluorometria/métodos , Metronidazol/análise , Polímeros/química , Pontos Quânticos/química , Animais , Limite de Detecção , Metronidazol/química , Leite/química
15.
J Am Chem Soc ; 141(31): 12397-12405, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31318207

RESUMO

High internal surface areas, an asset that is highly sought after in material design, has brought metal-organic frameworks (MOFs) to the forefront of materials research. In fact, a major focus in the field is on creating innovative ways to maximize MOF surface areas. Despite this, large-pore MOFs, particularly those with mesopores, continue to face problems with pore collapse upon activation. Herein, we demonstrate an easy method to inhibit this problem via the introduction of small quantities of polymer. For several mesoporous, isostructural MOFs, known as M2(NDISA) (where M = Ni2+, Co2+, Mg2+, or Zn2+), the accessible surface areas are increased dramatically, from 5 to 50 times, as the polymer effectively pins the MOFs open. Postpolymerization, the high surface areas and crystallinity are now readily maintained after heating the materials to 150 °C under vacuum. These activation conditions, which could not previously be attained due to pore collapse, also provide accessibility to high densities of open metal coordination sites. Molecular simulations are used to provide insight into the origin of instability of the M2(NDISA) series and to propose a potential mechanism for how the polymers immobilize the linkers, improving framework stability. Last, we demonstrate that the resulting MOF-polymer composites, referred to as M2(NDISA)-PDA, offer a perfect platform for the appendage/immobilization of small nanocrystals inside rendering high-performance catalysts. After decorating one of the composites with Pd (average size: 2 nm) nanocrystals, the material shows outstanding catalytic activity for Suzuki-Miyaura cross-coupling reactions.

16.
Chem Sci ; 10(17): 4542-4549, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123563

RESUMO

Metal-organic frameworks are of interest in a number of host-guest applications. However, their weak coordination bonding often leads to instability in aqueous environments, particularly at extreme pH, and hence, is a challenging topic in the field. In this work, a two-step, post-synthetic polymerization method is used to create a series of highly hydrophobic, stable MOF composites. The MOFs are first coated with thin layers of polydopamine from free-base dopamine under a mild oxygen atmosphere, which then undergoes a Michael addition to covalently graft hydrophobic molecules to the external MOF surface. This easy, mild post-synthetic modification is shown to significantly improve the stability of a number of structurally diverse MOFs including HKUST-1 (Cu), ZIF-67 (Co), ZIF-8 (Zn), UiO-66 (Zr), Cu-TDPAT (Cu), Mg-MOF-74 (Mg) and MIL-100 (Fe) in wet, caustic (acidic and basic) environments as determined by powder X-ray diffraction and surface area measurements.

17.
Korean J Orthod ; 49(2): 124-136, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30941299

RESUMO

Orthodontic treatment is more complicated when both soft and hard tissues must be considered because an impacted maxillary canine has important effects on function and esthetics. Compared with extraction of impacted maxillary canines, exposure followed by orthodontic traction can improve esthetics and better protect the patient's teeth and alveolar bone. Therefore, in order to achieve desirable tooth movement with minimal unexpected complications, a precise diagnosis is indispensable to establish an effective and efficient force system. In this report, we describe the case of a 31-year-old patient who had a labio-palatal horizontally impacted maxillary left canine with a severe occlusal alveolar bone defect and a missing maxillary left first premolar. Herein, with the aid of three-dimensional imaging, sequential traction was performed with a three-directional force device that finally achieved acceptable occlusion by bringing the horizontally impacted maxillary left canine into alignment. The maxillary left canine had normal gingival contours and was surrounded by a substantial amount of regenerated alveolar bone. The 1-year follow-up stability assessment demonstrated that the esthetic and functional outcomes were successful.

18.
Chemistry ; 25(9): 2161-2178, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114320

RESUMO

Owing to the almost boundless structural tunability, MOF and MOF-derived catalysts have recently exhibited structures of higher complexity, and hence, have demonstrated activity in a wide array of organic transformations. These reactions have a broad range of important applications ranging from pharmaceuticals to agriculture. Given the increasing number of publications in the area, this Minireview is focused on the most recent advancements in thermally driven organic transformations using both MOFs, nanoparticle@MOF (NP@MOF) composites, and several classes of MOF-derived materials. The most recent advancements made in materials design and the utility of these materials in a broad range of reactions are discussed.

19.
Arch Oral Biol ; 97: 59-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30343215

RESUMO

OBJECTIVE: The objective of this meta-analysis was to assess the association between three interleukin-10 (IL-10) promoter single nucleotide polymorphisms (rs1800871, rs1800872, and rs1800896) and periodontitis risk. METHODS: A systematic search was conducted in PubMed, Embase, and China National Knowledge Infrastructure databases and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS: Twenty-six studies met the inclusion criteria. The pooled analysis showed that rs1800871 was associated with an increased periodontitis risk under dominant model (CT + TT vs. CC: p = 0.004, OR = 1.79, 95% CI: 1.21-2.65) in Latin American populations but not in Asian (CT + TT vs. CC: p = 0.229, OR = 0.81, 95% CI: 0.58-1.14) and Caucasian (CT + TT vs. CC: p = 0.910, OR = 1.02, 95% CI: 0.75-1.39) populations. Similarly, rs1800872 conferred an increased risk of periodontitis only in Latin American populations (CA + AA vs. CC: p = 0.012, OR = 2.32, 95% CI: 1.20-4.47; A allele vs. C allele: p = 0.001, OR = 1.61, 95% CI: 1.22-2.14). No significant association was observed between rs1800896 and periodontitis risk. Subgrouping data according to periodontitis type revealed that rs1800872 was associated with both chronic periodontitis (A allele vs. C allele: p = 0.011, OR = 1.72, 95% CI: 1.13-2.62) and aggressive periodontitis (A allele vs. C allele: p = 0.038, OR = 1.32, 95% CI: 1.02-1.72). CONCLUSION: The studies reviewed support that the IL-10 rs1800871 and rs1800872 polymorphisms may represent a potential genetic biomarker for periodontitis risk in Latin American populations.


Assuntos
Predisposição Genética para Doença , Interleucina-10/genética , Periodontite/genética , Polimorfismo de Nucleotídeo Único , Humanos , América Latina , Periodontite/etnologia
20.
J Am Chem Soc ; 140(48): 16697-16703, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395464

RESUMO

With the ever-increasing production of electronics, there is an ensuing need for gold extraction from sources other than virgin mines. Currently, there are no technologies reported to date that can effectively and selectively concentrate ultratrace amounts of gold from liquid sources. Here, we provide a blueprint for the design of several highly porous composites made up of a metal-organic framework (MOF) template and redox active, polymeric building blocks. One such composite, Fe-BTC/PpPDA, is shown to rapidly extract trace amounts of gold from several complex water mixtures that include wastewater, fresh water, ocean water, and solutions used to leach gold from electronic waste and sewage sludge ash. The material has an exceptional removal capacity, 934 mg gold/g of composite, and extracts gold from these complex mixtures at record-breaking rates, in as little as 2 min. Further, due to the high cyclability, we demonstrate that the composite can effectively concentrate gold and yield purities of 23.9 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...